- Nano: The Essentials Understanding Nanoscience and Nanotechnology, Pradeep. T (2007). I Edition, Tata McGraw — Hill Publishing Company Limited, New Delhi.
- 8. Nanotechnology Lakshman Desai, 2007. 1st Edition, Paragon International Publishers.
- 9. Chemistry of nanomaterials : Synthesis, properties and applications by CNR Rao et.al.
- 10. Nano bio-technology: Concepts, Applications and Perspectives, Christ of M. Niemeyer, Wiley,
- 11. K.K. Jain, Nano Biotechnology, Horizions Biosciences, 2006.

BCH 556: NANOTECHNOLOGY: SOFT CORE

Lecture hours: 42

Total Credits: 03

Course objectives:

- To understand the basic concept of nanotechnology.
 - To synthesize nanoparticles and know their applications.
- To study the applications of nanotechnology in food industries.
- To learn its use in agriculture, farming.
- To undertsnd the importance of nano-fertilizers.

14 hrs.

Biological nanoparticles and their applications: Introduction to biological nanoparticles and their applications: Exosomes, lipoproteins, ferritin, magnetite viruses. Biological nanomotors and machines, mechanisms of biological machines, protein assemblies: muscle myosin, kinesin, nerve, ATPase, bacteriorhodopsin, haemoglobin dynein, cilia. Bacterial flagella: structure and function; nanomotor. Ion channels: nanopores of high specificity. Bioinspired nanomaterials: DNA and peptide based. Interaction between biomolecules and nanoparticle surfaces.

Biological synthesis: Biological synthesis of nanoparticles using bacteria, fungi, plants, purified enzymes 14 hrs. and biological templates, Slayer. Silver nanoparticles, gold nanoparticles, cerium oxide nanoparticles, titanium oxide and zinc oxide nanoparticles. Application of inorganic nanoparticles.

Unit III

Biosensor and nanobiosensor: Biosensor and nanobiosensor basic concepts, characterization, perception, Enzyme-metal NP hybrids for bio-sensing and for the generation of nanostructures, Biomolecule-semiconductor NPs for biosensing, Different types of nanobiosensors; Nanobiosensors for medical diagnostics. Nanoprobes for analytical applications. Nanotechnology and its application in food industry: Nanotechnology and food packaging, natural biopolymers, advantages of nanomaterials in food packaging applications, nanosensors, outstanding issues, risks and regulations, public perception. Nanotechnology in Agriculture, Precision farming, Smart delivery system, Insecticides using nanotechnology, Potential of nanofertilizers.

Course outcome:

- Student gets to know the biological nanoparticles.
- Synthesis of nanoparticles using bacteria, fungi, plants and so on.
- Student learns about biosensors, nanotechnology and its applications.

48

Chairperson, UG & PG Board of Studies in Biochemistry Department of Studies in Biochemistry Mangalore University, PG Centre Chikka Aluvara, Thorenoor Post

Somavarpet Taluk, Kodagu - 571 232

- · Nanotechnology in Food packaging, agriculture, farming,
- · Potential of nanofertilizers.

REFERENCES:

- Nano: The Essentials Understanding Nanoscience and Nanotechnology, Pradeep. T (2007). I Edition, Tata McGraw – Hill Publishing Company Limited, New Delhi.
- 2. Nanotechnology LakshmanDesai, 2007. 1st Edition, Paragon International Publishers.
- 3. Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao et.al.
- Nano bio-technology: Concepts, Applications and Perspectives, Christ of M. Niemeyer, Wiley, 2004.
- 5. K.K. Jain, Nano Biotechnology, Horizions Biosciences, 2006.
- 6. Introduction to Nanoscience, by Stuart Lindsay.
- Introduction to Nanomaterials and nanotechnology by Vladimir Pokropivny, Rynno Lohmus, Irina Hussainova, Alex Pokropivny and Sergey Vlassov.
- 8. Nanomaterials by A.K. Bandyopadhyay; New Age International Publishers.
- 9. Nanotechnology by Mark Ratner and Daniel Ratner, Pearson Education.
- 10. Nano Essentials, T. Pradeep/TMH
- 11. Bharat Bhusan, "Springer Handbook of Nanotechnology", springer, Newyork, 2007.
- 12. Hari Singh Nalwa, "Encyclopedia of Nanotechnology", USA 2011.
- 13. James A. Schwarz, Cristian I. Contescu, Karol Putyera, "Dekker encyclopedia".

BCH 557: PROJECT WORK/DISSERTATION: HARD CORE:

Project work: 08 hours/week

Total Credits: 04

- Course objectives

 To orient the students towards research work
 - To develop creativity, analysis, skill in research

Project work will be allotted to the students on defined research work such as protein and peptide chemistry, enzymology, clinical biochemistry, nanotechnology, inflammopharmocology, Phytopharmocolgy, biomarkers, toxicology etc. The students have to present and defend their project work.

Course Outcome

- Students gain the knowledge of literature survey and data analysis
- Students learn the laboratory techniques.

Chairperson, UG & PG Board of Studies in Biochemistry
Department of Studies in Biochemistry
Mangalore University, PG Centre
Chikka Aluvara, Thorenoor Post
Somavarpet Taluk, Kodagu – 571 232