- 3. Extraction of Chlorophylls from natural source and their estimation by UV-Vis spectroscopy
- 4. Separation of protein by Ion exchange chromatography
- 5. Separation of protein by Gel filtration chromatography
- 6. Purification of immunoglobulin by Affinity chromatography
- 7. Estimation of Phosholipids
- 8. Extraction and estimation of Phoshotidylcholine from egg yolk
- 9. Determination of pKa of an acid
- 10. Estimation of calcium from natural source (Ragi)

Course outcome:

- Students will have the ability to think critically and analyze biochemical problems.
- They can present scientific and technical information resulting from laboratory experimentation in both written and oral formats.
- They are in a position to explain the principle, instrumentation and applications of colorimetric analysis of various biochemical compounds.

REFERENCES:

- 1. Introduction to practical Biochemistry. David T. Plummer
- 2. Lab Manual of Biochemistry. By Nigam. 2007. Tata McGraw-Hill Education, USA.
- 3. Biochemical Methods. S. Sadasivam and A. Manickam. 3rd ed, New Age International P.

BCP 407: PRACTICAL GENERAL BIOCHEMISTRY: SOFT CORE

Practical: 8 hours/week

Total credits: 03

Course objectives:

- To establish broad knowledge of general biochemistry.
- To impart the basic analytical and technical skills to work effectively in biochemistry laboratories.
- To perform accurate quantitative measurements with an understanding of the theory and use of instrumentation, interpret experimental results perform calculations on these results and draw reasonable accurate conclusion.

EXPERIMENTS

- 1. Buffers: a) Introduction b) Preparation of acetate, citrate and phosphate buffers
- 2. Quantitative determination of protein concentration by Biuret method.
- 3. Estimation of protein by Lowry's method.
- 4. Estimation of protein by Bradford method.
- 5. Bicinchonic acid protein assay.
- 6. Measurement of protein concentration by UV spectroscopy.
- 7. Estimation of glucose from natural or synthetic source by Dinitrosalicylic acid method.
- 8. Estimation of total carbohydrates from natural source by Phenol sulphuric acid method.
- 9. Estimation of starch by Anthrone method
- 10. Estimation of ascorbic acid from natural source (guava, green chilli, orange etc.) by DNPH method.
- 11. Estimation of inorganic phosphate by Fiske- Subba Rao's method.
- 12. Estimation of DNA by Diphenylamine method
- 13. Estimation of RNA by Orcinol acid method

Chairperson, UG & PG Board of Studies in Biochemistry Department of Studies in Biochemistry Mangalore University, PG Centre Chikka Aluvara, Thorenoor Post Somavarpet Taluk, Kodagu - 571 232

Course outcome:

- Students will have the ability to think critically and analyze biochemical problems.
- They can present scientific and technical information resulting from laboratory experimentation in both written and oral formats.
- They are in a position to explain the principle, instrumentation and applications of colorimetric analysis of various biochemical compounds.

Course outcome:

- Students will have the ability to think critically and analyze biochemical problems.
- They can present scientific and technical information resulting from laboratory experimentation in both written and oral formats.
- They are in a position to explain the principle, instrumentation and applications of colorimetric analysis of various biochemical compounds.

REFERENCES:

- 1. Introduction to practical Biochemistry. David T. Plummer
- 2. Lab Manual of Biochemistry. By Nigam. 2007. Tata McGraw-Hill Education, USA.
- 3. Biochemical Methods. S. Sadasivam and A. Manickam. 3rd ed, New Age International P.

BCP 408: PRACTICAL BIOANALYTICAL TECHNIQUES: HARD CORE

Practical: 8 hours/week

Course objectives:

Total Credits: 04

- To use different types of chromatographic techniques to detect amino acids, lipids and carbohydrates.
- To characterize oil and fat to check their purity.
- To use various techniques to purify proteins.
- To separate and detect proteins using electrophoretic techniques.

Experiments:

- 1. Detection of amino acids by circular chromatography
- 2. Detection of amino acids by ascending chromatography.
- 3. Detection of amino acids by descending chromatography.
- 4. Detection of amino acids by 2D- paper chromatography.
- 5. Detection of amino acids by thin layer chromatography.
- 6. Detection of lipids by thin layer chromatography.7. Detection of carbohydrates by paper chromatography.
- 8. Detection of carbohydrates by thin layer chromatography.
- 9. Saponification number of oil and fat.
- 10. Iodine number of oil and fat.
- 11. Trichloroacetic acid precipitation of proteins.
- 12. Preparation of casein from milk.
- 13. Acetone precipitation of proteins
- 14. Purification of proteins: Ammonium sulphate precipitation (salting out), Dialysis,.
- 15. Separation and detection of proteins Native PAGE, Denaturing PAGE.

Course outcome:

• Students would gain knowledge about the biochemical techniques and their applications in day to-day life.

17

Chairperson, UG & PG Board of Studies in Biochemistry
Department of Studies in Biochemistry

01/2020

Mangalore University, PG Centre Chikka Aluvara, Thorenoor Post

Somavarpet Taluk, Kodagu - 571 232