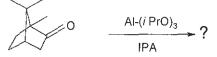
Reg. No.

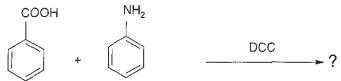
Third Semester M.Sc. Degree Examination, December 2018 (CBCS : 2016-17 Syllabus) ORGANIC CHEMISTRY (New Syllabus) Synthetic Reagents and Spectroscopic Techniques

Time : 3 Hours

Note : i) Answer Part – A and any four questions from Part – B. ii) Figures to the **right** indicate marks.


PART – A

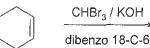
- 1. Answer all the following sub-divisions :
 - a) Give any one method for the preparation of phenyl lithium in the laboratory.
 - b) Complete the following sequence


c) Predict the product

$$\begin{array}{c}
 n \operatorname{Bu_3SnH} \\
 \overline{AIBN} \\
 \overline{A}
\end{array}$$

d) Predict the product and indicate the name of the reaction.

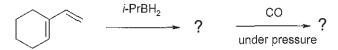
- e) With an example illustrate how TMS-I is useful in the cleavage of ethers.
- f) Name and draw the structure of the product :

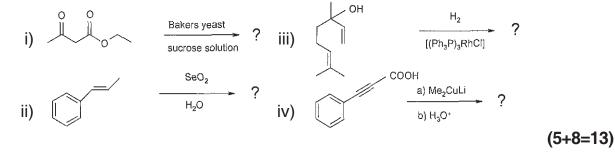

- g) Sketch the Karplus curve and indicate its importance.
- h) Identify the spin systems for protons of (i) ethyl bromide and
 - (ii) 1-chloro-4-nitrobenzene.

Max. Marks : 70

(9×2=18)

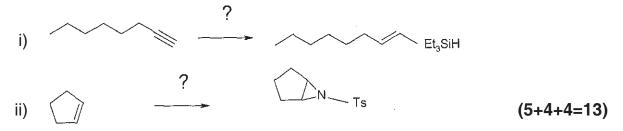
OCH 502


i) Complete the sequence and highlight the role of the crown ether

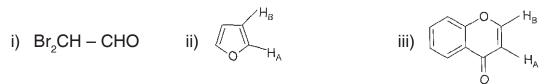

PART – B

Answer any four full questions :

- 2. a) Citing examples, describe the utility of Grignard reagents for the synthesis of (i) carboxylic acids and (ii) secondary amines.
 - b) Complete the following sequence


- c) Discuss the Barton decarboxylation reaction with a suitable example. (4+4+5=13)
- 3. a) Discuss with mechanism the Peterson olefination reaction for the stereospecific synthesis of E- and Z- alkenes.
 - b) With examples, outline the synthesis of alkyl zincs from alkyl halides. Compare the reactivity of organozincs with Grignard reagents.
 - c) With mechanism, discuss the Stille-Kelly reaction for the synthesis of aromatics. (5+4+4=13)
- 4. a) What are Zeiglar-Natta catalysts ? Citing examples, highlight the utility of the catalysts in polymerization reactions. Briefly discuss mechanism of polymerization.
 - b) Complete- the following sequences and give reasons for the formation of the product/s.

(4×13=52)


- 5. a) With examples, write a comparative account of the Woodward- and Prevost-hydroxylation reactions.
 - b) Citing examples and mechanism write an account of phase transfer catalysis.
 - c) Predict suitable reagents for the following transformations.

6. a) Suggest suitable reagents for the following transformations. How are the following conversions identified by IR spectroscopy ?

- b) Citing examples indicate how labile protons may be identified by ¹H-NMR spectroscopy.
- c) Sketch a synthesis of dibenzo[18]crown-6. Indicate the advantages of its use over 18-C-6. (5+4+4=13)
- 7. a) Indicate the splitting, approximate chemical shift values and spin system nomenclature for the protons in the compounds given below.

- b) Discuss alkene metathesis reactions employing ionic liquids.
- c) Derive the structural formula of an organic compound with the following data and assign the values :

Mol. Form. $C_{12}H_{14}O_4$ UV λ_{max} : 272 nm IR: 2964, 2877, 2943, 1728 and 1277 cm⁻¹ ¹H NMR : δ 1.49 (t), 4.44 (q) and 8.09 (s) ¹³C NMR: δ 14.3, 61.3, 129.5, 134.3 and 165.7 MS: m/e (rel. abund) 222, 194, 149 (100%), 76, 65, 29, 15. (4+4+5=13)