CH/AC/OC/CA S 406

I Semester M.Sc. Examination, December 2018 CHEMISTRY/APPLIED CHEMISTRY/ORGANIC CHEMISTRY/ ANALYTICAL CHEMISTRY (CBCS : 2016 – 17 Syllabus) Molecular Spectroscopy and Diffraction Techniques

Time: 3 Hours

Max. Marks: 70

 $(9 \times 2 = 18)$

Note : i) Answer Part – **A** and **any four** questions from Part – **B**. ii) Figures to the **right** indicate marks.

Answer **all** the following sub-divisions.

- a) Account for the fact 'Transition probability and population of states are major factors in deciding the intensity of spectral lines'.
 - b) Justify the fact that "Microwave spectroscopy can readily distinguish the presence of isotopes in a sample even though it cannot detect the presence of particular grouping".
 - c) Comment on the importance of force constant in determining the bond length.
 - d) Write the selection rules to be adopted to get parallel and perpendicular modes of vibrations in the IR spectrum of a molecule.
 - e) With an illustrative example show that the centre of symmetry has an effect on the intensity of alternate lines in the P and R branches.
 - f) The fundamental vibrational frequency of HCl is 2890 cm⁻¹. Calculate the force constant of this molecule. (The atomic masses : ${}^{1}H = 1.673 \times 10^{-27}$ Kg, ${}^{35}Cl = 58.06 \times 10^{-27}$ Kg).
 - g) What is Ewald sphere ? Give its physical significance.

P.T.O.

CH/AC/OC/CA S 406

-2-

- h) Explain the working principles of transmission electron microscope.
- i) How do you estimate the wavelength of an electron beam ?

Answer any four questions.

- 2. a) Explain the effect of isotopic substitution on the energy levels and rotational spectrum of a rigid diatomic molecule.
 - b) Differentiate between harmonic and anharmonic osicllators with the help of potential energy curves.
 - c) The pure rotational spectrum of gaseous HCl consists of a series of equally spaced lines by 20.80 cm⁻¹. Calculate the internuclear distance of the molecule (h = 6.626×10^{-34} Js, ¹H = 1.673×10^{-27} Kg, ³⁵Cl = 58.06×10^{-27} Kg, C = 3×10^8 ms⁻¹, l = 10.40×10^2). (4+4+5)
- 3. a) The spectrum of HCI shows very strong absorption at 2886 cm⁻¹, a weaker one at 5656 cm⁻¹ and a very weak one at 8347cm⁻¹. Find equilibrium frequency, anharmonicity constant and force constant.
 - b) Explain the microwave spectrum of a rigid diatomic rotator.
 - c) Draw and explain the rotational vibrational energy levels for any symmetric top molecule using the principle of Born-Oppenheimer approximation.

(3+5+5)

- 4. a) Explain the Raman effect based on quantum theory of radiation.
 - b) What do you mean by 'mutual exclusion principle' ? Explain how is it useful in the structural elucidation of a molecule.
 - c) The spacing between lines in rotation Raman spectrum of a diatomic molecule in 12 cm⁻¹. What is the Raman shift of first Stokes line ? (4+6+3)

(4×13=52)

-3-

- 5. a) Explain the Raman activity of vibrations of H_2O and N_2O .
 - b) Explain the rotational Raman spectrum of a symmetric top molecule.
 - c) With a neat sketch explain the working of Raman spectrometer. (5+5+3)
- 6. a) Describe the Laue method of study of X-ray diffraction of single crystals.
 - b) Draw and explain the intensity Vs. sin (θ/λ) plots concerned with X-ray diffraction of atoms and molecules.
 - c) Write a note on the applications of neutron diffraction. (4+5+4)
- 7. a) Explain any four important factors which control the diffracted X-ray beam intensity.
 - b) Discuss the theory and applications of electron diffraction.
 - c) Give an account of the systematic absence. (4+5+4)