Reg. No.									
----------	--	--	--	--	--	--	--	--	--

CMH 405

First Semester M.Com. Degree Examination, December 2018 (CBCS) (New Syllabus) COMMERCE Management Science

Time: 3 Hours Max. Marks: 70

Note: Non-programmable calculator and present value table are allowed.

SECTION - A

Note: Answer any four questions out of seven, each question carries 10 marks, answer to **each** question should **not** exceed 4 pages. (10×4=40)

- 1. Explain the significance and scope of OR in modern management.
- 2. Define Linear Programming. What are its essential characteristics?
- 3. What is an unbalanced transportation problem? Illustrate.
- 4. A firm manufactures two products A and B. Products are produced and sold on a weekly basis. The weekly production cannot exceed 25 for product A and 35 for product B because of limited available facilities. The company employs total of 60 workers. Product A requires 2 man weeks of labour, while B one man week of labour. Profit margin on A is Rs. 60 and on B is Rs. 40. Formulate the problem.
- 5. Solve the following LPP using Graphical Procedure.

$$Maximise Z = 10x_1 + 5x_2$$

Subject to
$$4x_1 + 5x_2 \le 100$$

$$5x_1 + 2x_2 \le 80$$

$$x_1, x_2 \ge 0$$

6. Solve the following transportation problem using Matrix Minimum Method.

Steel mills		Α	В	С	D	Availability
Ports	Α	50	60	100	50	20,000
	В	80	40	70	50	38,000
	С	90	70	30	50	16,000
Demand		10,000	18,000	22,000	24,000	74,000

7. Find the initial basic feasible solution to the following assignment model.

	Projects					
Contractors		Spring	Monsoon	Hot	Winter	
	М	2	10	9	7	
	N	13	4	14	8	
	0	13	14	16	11	
	Р	4	15	13	9	

SECTION - B

Note: Answer any two questions out of three questions, each question carries

15 marks, answer to each question should not exceed 7 pages. (15×2 =30)

- 8. Explain various methods of solving transportation problem. Which is the best method of solving it and why?
- 9. A project has the following time schedule

Activity	times (weeks)	Activity	times (weeks)
1 – 2	2	3 – 7	5
1 – 3	2	4 – 6	3
1 – 4	1	5 – 8	1
2 – 5	4	6 - 9	5
3 - 6	8	7 – 8	4
8 – 9	3		

Construct PERT network and compute critical path and its duration.

10. The following table gives data on normal time and cost and crash time and cost for a project.

Activity	Normal		Crash		
	Time (days)	Cost (Rs.)	Time (days)	Cost (Rs.)	
1 – 2	6	600	4	1000	
1 – 3	4	600	2	2000	
2 – 4	5	500	3	1500	
2 – 5	3	450	1	650	
3 – 4	6	900	4	2000	
4 – 6	8	800	4	3000	
5 – 6	4	400	2	1000	
6 – 7	3	450	2	800	

The indirect cost per day is Rs. 100.

- a) Draw the PERT network and identify the critical path.
- b) What are the normal project duration and associated cost?
- c) Crash the critical activities systematically and determine the optimum project completion time and cost.