

DEPARTMENT OF MARINE GEOLOGY

MGE 508: Ocean & Atmospheric Science (Open Elective)

Course Outcome:

- CO1: Attain knowledge about physical oceanography Physical properties of sea water. Waves, tides and currents. Coastal protection and management
- CO2: Understand chemical oceanography Composition of seawater: Constancy of composition of seawater and its limitations. Distribution of elements in seawater and biogeochemical processes regulating the composition and climate change.
- CO3: Introduction to atmospheric Science Structure and composition of the atmosphere.

 Processes regulating the composition of the atmosphere, and human interference.
- CO4: Students will understand various branches of Oceanography.

Oceanography

Unit 1	Physical Oceanography - Physical properties of sea water. Waves,	6 hrs
	tides and currents. Coastal protection and management.	
Unit 2	Chemical Oceanography - Composition of seawater: Constancy of	6 hrs
	composition of seawater and its limitations. Distribution of elements	
	in seawater and biogeochemical processes regulating the composition	
	and climate change. Residence times of elements in the ocean and its	
	importance. Tracers for understanding the present and past	
	oceanographic processes.	
Unit 3	Biological and Geological Oceanography - Introduction, classification	6 hrs
	of marine life. Primary, secondary and tertiary production. Planktonic	
	and benthic life in the ocean. Diversity index and its use in biological	
	oceanography, food-web. Geological oceanography: Origin and	
	evolution of the ocean floor. Continental drift, sea-floor spreading and	
	plate tectonics. Ocean morphological features, development and	
	significance.	
	1	

Unit 4	Marine mineral resources: Distribution and classification of minerals	6 hrs
	of economic importance in different oceanographic settings: Seawater	
	as a source of elements/minerals. Placer and heavy mineral deposits,	
	petroleum and coal, phosphorites, gas hydrates, poly-metalic nodules,	
	metals enriched crusts, hydrothermal and metalliferous sediments.	

Atmospheric Science

Unit 5	Introduction to atmospheric Science - Structure and composition of	8 hrs
	the atmosphere. Processes regulating the composition of the	
	atmosphere, and human interference - Greenhouse effect, ozone hole	
	and global warming. Introduction to meteorology and elements of the	
	weather system.	
Unit 6	Climatology and Paleoclimatology: Difference between weather and	8 hrs
	climate. Climate and its principles of classification. Climate change,	
	climate cycles and tools/proxies for studying paleoclimatology.	

List of Reference:

- 1. Physical Geology C. W. Montgomery-Wm. C. Brown Publishing Co. Ltd (1993).
- 2. Physical Geology A. N. Strahler.
- 3. Meteorology William L. Donn (1975) McGraw-Hill Book Co., New York.
- 4. An introduction to Dynamic Meteorology J. R. Holton (1992) III Ed, Academic Press.
- 5. Carol M. Lalli and Timothy R. Parsons. Biological Oceanography: An
- 6. Introduction (1997).
- 7. Miller, C.B. (2004) Biological Oceanography. Blackwell Publishers. 416pp.
- 8. Paul R. Pinet (1992) Oceanography: An introduction to the Planet Oceanus, West Publ., Co.571pp.
- 9. Thruman, H. V. (1994) Introductory Oceanography. 7th Ed. Macmillian Pub., Co.
- 10. George Karleskint, Richard Turner, James Small, (2012) Introduction to Marine Biology Publisher: Brooks Cole, 512 pp.
- 11. Fasham, Michael J.R. (2003) Ocean Biogeochemistry. The Role of the Ocean Carbon Cycle in Global Change Series.
- 12. Carter, R.W.G., and Orford, J.D. (1984) Coarse clastic barrier beaches: a discussion of the distinctive dynamic and morpho-sedimentary characteristics. Marine Geology 60: 377-89.
- 13. Komar, P. D., (1976) Beach Processes and Sedimentation, Prentice-Hall. 429p.
- 14. Reddy M.P.M. (2001) Descriptive Physical Oceanography, AA Balkema Press. 440p.

- 15. Seibold E.: The seafloor (1982).
- 16. An Open University Course Team (1989): Seawater: Its composition, properties and behaviour (pp.33)
- 17. Bhandari, L. L. and Venkatachala, B.S. (Ed.): Petroliferous basins of India.
- 18. Bjorlykke K. (1984): Sedimentology and Petroleum Geology.
- 19. Abdulin, F.: Petroleum of Oil and Gas (1985).
- 20. Sidorov, N. A.: Drilling Oil and Gas wells (1985).
- G.S. Roonwal: The Indian Ocean: Exploitable Mineral and Petroleum Resources (1986).

